17 research outputs found

    Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking

    Get PDF
    Previous studies of human locomotion indicate that foot and ankle structures can interact in complex ways. The structure of the foot defines the input and output lever arms that influences the force-generating capacity of the ankle plantar flexors during push-off. At the same time, deformation of the foot may dissipate some of the mechanical energy generated by the plantar flexors during push-off. We investigated this foot-ankle interplay during walking by adding stiffness to the foot through shoes and insoles, and characterized the resulting changes in in vivo soleus muscle-tendon mechanics using ultrasonography. Added stiffness decreased energy dissipation at the foot (p \u3c 0.001) and increased the gear ratio (i.e., ratio of ground reaction force and plantar flexor muscle lever arms) (p \u3c 0.001). Added foot stiffness also altered soleus muscle behaviour, leading to greater peak force (p \u3c 0.001) and reduced fascicle shortening speed (p \u3c 0.001). Despite this shift in force-velocity behaviour, the whole-body metabolic cost during walking increased with added foot stiffness (p \u3c 0.001). This increased metabolic cost is likely due to the added force demand on the plantar flexors, as walking on a more rigid foot/shoe surface compromises the plantar flexors’ mechanical advantage

    Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking

    Get PDF
    Previous studies of human locomotion indicate that foot and ankle structures can interact in complex ways. The structure of the foot defines the input and output lever arms that influences the force-generating capacity of the ankle plantar flexors during push-off. At the same time, deformation of the foot may dissipate some of the mechanical energy generated by the plantar flexors during push-off. We investigated this foot-ankle interplay during walking by adding stiffness to the foot through shoes and insoles, and characterized the resulting changes in in vivo soleus muscle-tendon mechanics using ultrasonography. Added stiffness decreased energy dissipation at the foot (p < 0.001) and increased the gear ratio (i.e., ratio of ground reaction force and plantar flexor muscle lever arms) (p < 0.001). Added foot stiffness also altered soleus muscle behaviour, leading to greater peak force (p < 0.001) and reduced fascicle shortening speed (p < 0.001). Despite this shift in force-velocity behaviour, the whole-body metabolic cost during walking increased with added foot stiffness (p < 0.001). This increased metabolic cost is likely due to the added force demand on the plantar flexors, as walking on a more rigid foot/shoe surface compromises the plantar flexors’ mechanical advantage

    Microbiota-based markers predictive of development of Clostridioides difficile infection

    Get PDF
    Antibiotic-induced modulation of the intestinal microbiota can lead to Clostridioides difficile infection (CDI), which is associated with considerable morbidity, mortality, and healthcare-costs globally. Therefore, identification of markers predictive of CDI could substantially contribute to guiding therapy and decreasing the infection burden. Here, we analyze the intestinal microbiota of hospitalized patients at increased CDI risk in a prospective, 90-day cohort-study before and after antibiotic treatment and at diarrhea onset. We show that patients developing CDI already exhibit significantly lower diversity before antibiotic treatment and a distinct microbiota enriched in Enterococcus and depleted of Ruminococcus, Blautia, Prevotella and Bifidobacterium compared to non-CDI patients. We find that antibiotic treatment-induced dysbiosis is class-specific with beta-lactams further increasing enterococcal abundance. Our findings, validated in an independent prospective patient cohort developing CDI, can be exploited to enrich for high-risk patients in prospective clinical trials, and to develop predictive microbiota-based diagnostics for management of patients at risk for CDI

    Incidence and predictive biomarkers of Clostridioides difficile infection in hospitalized patients receiving broad-spectrum antibiotics

    Get PDF
    Trial enrichment using gut microbiota derived biomarkers by high-risk individuals can improve the feasibility of randomized controlled trials for prevention of Clostridioides difficile infection (CDI). Here, we report in a prospective observational cohort study the incidence of CDI and assess potential clinical characteristics and biomarkers to predict CDI in 1,007 patients ≥ 50 years receiving newly initiated antibiotic treatment with penicillins plus a beta- lactamase inhibitor, 3rd/4th generation cephalosporins, carbapenems, fluoroquinolones or clindamycin from 34 European hospitals. The estimated 90-day cumulative incidences of a first CDI episode is 1.9% (95% CI 1.1-3.0). Carbapenem treatment (Hazard Ratio (95% CI): 5.3 (1.7-16.6)), toxigenic C. difficile rectal carriage (10.3 (3.2-33.1)), high intestinal abundance of Enterococcus spp. relative to Ruminococcus spp. (5.4 (2.1-18.7)), and low Shannon alpha diversity index as determined by 16 S rRNA gene profiling (9.7 (3.2-29.7)), but not nor- malized urinary 3-indoxyl sulfate levels, predicts an increased CDI risk

    Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications

    Get PDF
    Sensitivity analysis (SA) aims to identify the key parameters that affect model performance and it plays important roles in model parameterization, calibration, optimization, and uncertainty quantification. However, the increasing complexity of hydrological models means that a large number of parameters need to be estimated. To better understand how these complex models work, efficient SA methods should be applied before the application of hydrological modeling. This study provides a comprehensive review of global SA methods in the field of hydrological modeling. The common definitions of SA and the typical categories of SA methods are described. A wide variety of global SA methods have been introduced to provide a more efficient evaluation framework for hydrological modeling. We review, analyze, and categorize research into global SA methods and their applications, with an emphasis on the research accomplished in the hydrological modeling field. The advantages and disadvantages are also discussed and summarized. An application framework and the typical practical steps involved in SA for hydrological modeling are outlined. Further discussions cover several important and often overlooked topics, including the relationship between parameter identification, uncertainty analysis, and optimization in hydrological modeling, how to deal with correlated parameters, and time-varying SA. Finally, some conclusions and guidance recommendations on SA in hydrological modeling are provided, as well as a list of important future research directions that may facilitate more robust analyses when assessing hydrological modeling performance

    Postoperative Staphylococcus aureus Infections in Patients With and Without Preoperative Colonization

    Full text link
    Importance Staphylococcus aureus surgical site infections (SSIs) and bloodstream infections (BSIs) are important complications of surgical procedures for which prevention remains suboptimal. Contemporary data on the incidence of and etiologic factors for these infections are needed to support the development of improved preventive strategies.Objectives To assess the occurrence of postoperative S aureus SSIs and BSIs and quantify its association with patient-related and contextual factors.Design, Setting, and Participants This multicenter cohort study assessed surgical patients at 33 hospitals in 10 European countries who were recruited between December 16, 2016, and September 30, 2019 (follow-up through December 30, 2019). Enrolled patients were actively followed up for up to 90 days after surgery to assess the occurrence of S aureus SSIs and BSIs. Data analysis was performed between November 20, 2020, and April 21, 2022. All patients were 18 years or older and had undergone 11 different types of surgical procedures. They were screened for S aureus colonization in the nose, throat, and perineum within 30 days before surgery (source population). Both S aureus carriers and noncarriers were subsequently enrolled in a 2:1 ratio.Exposure Preoperative S aureus colonization.Main Outcomes and Measures The main outcome was cumulative incidence of S aureus SSIs and BSIs estimated for the source population, using weighted incidence calculation. The independent association of candidate variables was estimated using multivariable Cox proportional hazards regression models.Results In total, 5004 patients (median [IQR] age, 66 [56-72] years; 2510 [50.2%] female) were enrolled in the study cohort; 3369 (67.3%) were S aureus carriers. One hundred patients developed S aureus SSIs or BSIs within 90 days after surgery. The weighted cumulative incidence of S aureus SSIs or BSIs was 2.55% (95% CI, 2.05%-3.12%) for carriers and 0.52% (95% CI, 0.22%-0.91%) for noncarriers. Preoperative S aureus colonization (adjusted hazard ratio [AHR], 4.38; 95% CI, 2.19-8.76), having nonremovable implants (AHR, 2.00; 95% CI, 1.15-3.49), undergoing mastectomy (AHR, 5.13; 95% CI, 1.87-14.08) or neurosurgery (AHR, 2.47; 95% CI, 1.09-5.61) (compared with orthopedic surgery), and body mass index (AHR, 1.05; 95% CI, 1.01-1.08 per unit increase) were independently associated with S aureus SSIs and BSIs.Conclusions and Relevance In this cohort study of surgical patients, S aureus carriage was associated with an increased risk of developing S aureus SSIs and BSIs. Both modifiable and nonmodifiable etiologic factors were associated with this risk and should be addressed in those at increased S aureus SSI and BSI risk

    Continuous Tracking of Foot Strike Pattern during a Maximal 800-Meter Run

    No full text
    (1) Background: Research into foot strike patterns (FSP) has increased due to its potential influence on performance and injury reduction. The purpose of this study was to evaluate changes in FSP throughout a maximal 800-m run using a conformable inertial measurement unit attached to the foot; (2) Methods: Twenty-one subjects (14 female, 7 male; 23.86 ± 4.25 y) completed a maximal 800-m run while foot strike characteristics were continually assessed. Two measures were assessed across 100-m intervals: the percentage of rearfoot strikes (FSP%RF), and foot strike angle (FSA). The level of significance was set to p ≤ 0.05; (3) Results: There were no differences in FSP%RF throughout the run. Significant differences were seen between curve and straight intervals for FSAAVE (F [1, 20] = 18.663, p &lt; 0.001, ηp2 = 0.483); (4) Conclusions: Participants displayed decreased FSA, likely indicating increased plantarflexion, on the curve compared to straight intervals. The analyses of continuous variables, such as FSA, allow for the detection of subtle changes in foot strike characteristics, which is not possible with discrete classifiers, such as FSP%RF

    Using A Soft Conformable Foot Sensor to Measure Changes in Foot Strike Angle During Running

    No full text
    The potential association between running foot strike analysis and performance and injury metrics has created the need for reliable methods to quantify foot strike pattern outside the laboratory. Small, wireless inertial measurement units (IMUs) allow for unrestricted movement of the participants. Current IMU methods to measure foot strike pattern places small, rigid accelerometers and/or gyroscopes on the heel cap or on the instep of the shoe. The purpose of this study was to validate a thin, conformable IMU sensor placed directly on the dorsal foot surface to determine foot strike angles and pattern. Participants (n = 12) ran on a treadmill with different foot strike patterns while videography and sensor data were captured. Sensor measures were compared against traditional 2D video analysis techniques and the results showed that the sensor was able to accurately (92.2% success) distinguish between rearfoot and non-rearfoot foot strikes using an angular velocity cut-off value of 0&deg;/s. There was also a strong and significant correlation between sensor determined foot strike angle and foot strike angle determined from videography analysis (r = 0.868, p &lt; 0.001), although linear regression analysis showed that the sensor underestimated the foot strike angle. Conformable sensors with the ability to attach directly to the human skin could improve the tracking of human dynamics and should be further explored
    corecore